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ABSTRACT

Performance Characterization of High-Level Programming Models for GPU Graph

Analytics

In this thesis, we identify several factors that are critical to high-performance GPU graph

analytics: efficient and flexible building block operators, synchronization and data movement,

workload distribution and load balancing, and memory access patterns. We analyze the impact

of these critical factors through three high-level GPU graph analytic frameworks, VertexAPI2,

MapGraph, and Gunrock. We also examine their effect on different workloads: four common

graph primitives from multiple graph application domains, evaluated through real-world and

synthetic graphs. We show that efficient building block operators enable more powerful

operations for fast information propagation and result in fewer device kernel invocations, less

data movement, and fewer global synchronizations, and thus are key focus areas for efficient

large-scale graph analytics on GPUs.
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Chapter 1

Introduction

1.1 Background and Motivation
Large-scale graph structures with millions or billions of vertices and edges are rapidly created

by modern applications to map relationships among high volumes of connected data. Graph

analytics, such as traversal, query, matching, and others, are essential components of big-data

analytics for many high-performance computing and commercial applications across domains

from social network analysis, financial services, scientific simulations, recommendation system,

and biological networks to targeted advertising. Nowadays, specialized graph analytic

systems including graph search [3], betweenness centrality [4], shortest path findings [5],

personalized PageRank [6], and strongly connected components [7] gained significant attention

in high-performance computing community as well.

The demands of diverse graph applications and strong desire for efficiency have led to

numerous efforts on speeding up graph primitives via parallelization architectures. A number

of shared memory CPU graph processing engines have emerged in recent several years, such as

GraphChi [8], Galois [9], X-Stream [10], TurboGraph [11], Ligra(+) [12, 13], and Polymer [14].

Prior research focuses on scaling graph-analytics on distributed environments including the

Parallel Boost Graph Library (PBGL) [15, 16], Google’s Pregel [17], GraphLab [18, 19],

PowerGraph [20], GraphX [21], and more. Other work HelP [22], provides a higher

level abstraction on top of the GraphX, improves programmability by capturing commonly

appearing operations in graph primitives, with the motivation of delivering a set of more
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intuitive operators to help implement graph primitives faster than low-level implementation

or using other existing frameworks. These graph processing frameworks allow programmers to

concentrate on expressing primitives, because the framework takes care of automatically scaling

the computations on parallel architectures.

1.2 GPU Graph Analytics
Graphics Processing Units (GPUs) are power-efficient and high-memory-bandwidth processors

that can exploit parallelism in computationally demanding general purpose applications [23].

GPUs, due to the SIMD-like (Single Instruction Multiple Data) architecture, have proved

to be extremely effective at accelerating operations on traditional vector- or matrix-based

data structures, which exhibit massive data parallelism, regular memory access patterns, few

synchronizations and a straightforward mapping to parallel hardware.

However, many application domains employ applications that create, traverse, and update

irregular data structures such as trees, graphs, and priority queues. Recent low-level hardwired

graph primitive implementations for breath-first search in b40c [1], graph connectivity [2],

betweenness centrality [4, 24], and single-source shortest path [25], have demonstrated

the strong computational power of modern GPUs in bandwidth-hungry graph analytics.

Unfortunately, mapping irregular graph primitives to parallel hardware is non-trivial due to

the data-dependent control flow and unpredictable memory access patterns [26–30].

For more general real-world graph analytics, developers need a high-level GPU

programming interface to implement various types of complex graph applications on the GPU

without sacrificing much performance. Programming models are key design choices that impact

both the expressiveness and performance of graph analytic frameworks. Most GPU+graph

programming models today mirror CPU programming models: for instance, Medusa [31]

uses Pregel’s message passing model, and VertexAPI2 [32], MapGraph [33] and CuSha [34]

use and modify PowerGraph’s Gather-Apply-Scatter (GAS) programming model. Our more

recent GPU high-level graph framework, Gunrock [30], uses a GPU-specific data-centric model

focused on operations on a subset of vertices and/or edges. Many frameworks have been

extended to multi-GPU platform [31, 35] to deliver high-performance and scalability while
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maintaining programmability and compatibility. Hybrid CPU+GPU graph analytic frameworks,

such as Totem [36], also gained many attentions.

Efficient and scalable mechanisms to schedule workloads on parallel computation resources

are imperative. The unpredictable control flows and memory divergence on GPU introduced by

irregular graph topologies need sophisticated strategies to ensure efficiency. And yet, unlike

CPU graph frameworks, little is known about the behavior of high-level GPU frameworks

across a broad set of graph applications. This thesis is trying to understand one problem:

what kind of frameworks, libraries and application programming interfaces can be used in the

development graph primitives and what are their advantages and disadvantages? This leads to

the next question: what are critical factors that impact the efficiency of graph processing on

the GPU? Are they influenced by graph topology? Or by programming model? How can we

build more programmable and efficient graph analytics framework? What is the “smart” way

of thinking about graph analytic problems on parallel architecture? Evaluating the performance

is essential for tuning, optimization and framework selection. Single GPU workload is critical

as a basic building block of future graph processing frameworks on multiple GPUs and GPU

clusters. A thorough investigation of single GPU graph framework performance can provide

insights and potential tuning and optimizations to accelerate a class of irregular applications

with further benefit to future graph analytic frameworks on multi-GPUs and GPU clusters.

1.3 Previous Work
Developing and evaluating graph primitives on GPU is a hot recent topic. Xu et al. [28] studied

12 graph applications in order to identify bottlenecks that limit GPU performance. They

show that graph applications tend to need frequent kernel invocations and make ineffective

use of caches compared to non-graph applications. Pannotia [27] is a suite of several

specific GPGPU graph applications implemented in OpenCL used to characterize the low-level

behavior of SIMD architectures, including cache hit ratios, execution time breakdown, speedups

over CPU version execution, and Single Instruction Multiple Thread (SIMT) lane utilization.

O’Neil et al. [29] presented the first simulator-based characterization, which focused on

the issue of underutilized execution cycles due to irregular graph codes and addressed the
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effectiveness of graph-specific optimizations. Burtscher et al. [26] defined two measures

of irregularity—Control-Flow Irregularity (CFI) and Memory-Access Irregularity (MAI)—to

evaluate irregular GPU kernels. Their contributions can be summarized as: a) irregularity

varies across different applications and datasets; b) common performance bottlenecks include

underutilized execution cycles, branch divergence, load imbalance, synchronization overhead,

memory coalescing, L2/DRAM latency, and DRAM bandwidth; c) improvements in memory

locality/coalescing and fine-grained load balancing can improve performance. Yang and

Chien [37] studied different ensembles of parallel graph computations, and concluded that

graph computation behaviors form an extremely broad space. Beamer et al. [38] using diverse

workload to demonstrate that most of workload fails to fully utilize memory bandwidth.

Previous graph processing workload characterizations are dominated by architectural-level

behavior and simulation-based analysis. However, the high-level abstractions for graph

analytics on GPU-based frameworks, and their impact on graph workloads, have not been

investigated in detail. What remains unclear is how to map these low-level optimizations

and performance bottlenecks to different high-level design choices in order to find best

programming model and a set of general principles for computing graph analytics on the GPU.

Previous characterization work is also limited to individual graph primitives implemented on

their own rather than examining state-of-the-art general-purpose graph analytic frameworks.

Unlike previous benchmarking efforts, we focus more on the performance and characteristics

of high-level programming models for graph analytics on GPUs.

1.4 Main Contributions
This thesis tries to achieve the above goal. Our contributions are as follows:

• We identify main factors that are critical to efficient high-level GPU graph analytic

frameworks and present a performance characterization of three existing frameworks

on the GPU—VertexAPI2, MapGraph, and Gunrock—by exploring the implementation

space of different categories of graph primitives and their sensitivity to diverse topologies.

• We present a detailed experimental evaluation of topology sensitivity and identify the key

properties of graphs and their impact on the performance of modern GPU graph analytic
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frameworks.

• We investigate the effect of design choices and primitives used by the three high-level

GPU graph analytic frameworks above and key design aspects for more efficient graph

analytics on the GPU.

1.5 Thesis Organization
The rest of the thesis is organized as follows: Chapter 2 provides the necessary background and

motivation on graph processing using high-level frameworks (Section 2.1) and reviews several

common graph primitives used in this work as case studies in Section 2.2. In Section 2.3, we

introduce two existing popular graph programming models and their implementations on GPU.

Chapter 3 first identifies several important factors that impact graph analytics performance

on GPUs in Section 3.1. Then we discuss and define the methodology and performance

metric used to investigate the programming models (Section 3.2). Section 3.3 specifies the

testing environment in this study. Detailed empirical studies are provided in Chapter 4.

Finally, Chapter 5 discusses some efforts that potentially can be made to further improve graph

processing abstractions. The main body of the thesis is followed by bibliography which contain

useful references information.
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Chapter 2

Preliminaries and Abstractions

2.1 Preliminaries
Let an unweighted graph be G = (V,E) where V is the set of vertices and E is the set of edges

in the graph, where E ⊆ (V ×V ). We denote a weighted graph by G = (V,E,w), where w maps

an edge to a real value associated with E. We denote number of vertices by |V | and similarly,

|E| for number of edges in the graph. A path from a vertex u to a vertex v is any sequence of

edges originating from u and terminating at v. An undirected (symmetric) graph implies that

for all pairs of (u,v) ∈V : (u,v) ∈ E and (v,u) ∈ E. Otherwise, it is a directed graph. In graph

processing, a vertex frontier represents a subset of vertices U ∈V and similarly an edge frontier

represents a subset of edges I ∈ E.

Representation The adjacency list format for graph representation stores for each vertex an

array of indices of other vertices that it has an edge to as well as the vertex’s degree. Compressed

Sparse Row (CSR) is a concise representation of adjacency list that store arrays consecutively

in memory as shown in Fig 2.1. CSR is a good fit for its space-efficiency and its ability to

0

2

1

3 4

length of |V| + 1

row-offsets 0 1 3 5 6 6

col-indices 1 0, 2 3, 4 4

length of |E|

Figure 2.1: Compressed Sparse Row (CSR) graph representation
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strip out adjacency lists and find offsets using parallel-friendly primitives. CSR contains a

row pointer array (row-offsets) that stores the start of each adjacency list and a column indices

array (col-indices) that contains the concatenation of the neighbor list of each vertex. Compress

Sparse Column (CSC) is similar to CSR except it stores column pointers and row indices. This

representation is space-efficient which minimizes memory use to O(|V |+ |E|).

2.2 Graph Primitives
We observe that graph primitives can be divided into two broad groups. First, traversal-based

primitives start from a subset of vertices in the graph, and systematically explore and/or update

their neighbors until all reachable vertices have been touched. Note that only a subset of

vertices is typically active at any point in the computation. In contrast, most or all vertices

in a dense-computation-based primitive are active in every stage of the computation.

Breath-First Search (BFS): BFS is a visiting strategy for vertices of a graph that

systematically explores the connected vertices of a graph staring from a given source vertex

vsource ∈ V such that all vertices are visited in the order of hop-distance from the given

source vertex. BFS is a common building block for more sophisticated graph primitives,

such as eccentricity estimation [39], betweenness centrality, and connected component. BFS

is representative of a class of irregular and data-dependent parallel computations [1]. Other

traversal-based primitives include Betweenness Centrality (BC), a quantitative measure to

capture the effect of important vertices in a graph, and shortest path finding, which calculates

the shortest distance between source and all other vertices in a weighted graph, and many others.

The work complexity of BFS is O(|V |+ |E|).

Single-Source Shortest Path (SSSP): For a weighted graph G = (V,E,w), beginning with

the source vertex vsource ∈V , SSSP calculates the shortest distance (minimum sum of weights)

between the source and any reachable vertex in the graph. All vertices start with an infinite (∞)

distance except for source vertex, then the distances are updated by examining the neighbors in

each iteration to find the one with minimum cost after including the path to that neighbor. The

above primitives are generally considered traversal-based.

Connected Component (CC): For an undirected graph, CC finds each subset of vertices
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C⊆V in the graph such that each vertex in C can reach every other vertex in C, and no path exists

between vertices in C and vertices in V\C. The simple approach to calculate graph connectivity

is to use BFS traversal, or it can be implemented using label propagation [2]. Depending on its

implementation, connected component can be in either category.

PageRank: Link analysis and ranking primitives such as PageRank calculate the relative

importance of vertices and are dominated by vertex-centric updates; PageRank is an example

of a dense-computation-based primitive as opposed to traversal-based primitives that are

container-centric focusing on particular frontier of vertices/edges at any point of computation.

The PageRank score for a web page A can be calculated by iterating Equation 2.1, where delta

is a damping factor, degree is the number of out-going links from web page x, and the set x ∈ A

denotes the set of all web pages x that have a link to A.

rankA = (1−delta)+delta×∑
x∈A

rankx

degreex
(2.1)

In this work, we use four common primitives—BFS, SSSP, CC and PageRank—as case

studies to benchmark the performance of the three mainstream programmable graph analytic

frameworks on the GPU. BFS represents a simpler workload per edge while SSSP includes

more expensive computations and complicated traversal paths. CC and PageRank involve

dense computations with different per vertex/edge workloads. The behavior of these primitives

is diverse, covering both memory- and computation-bound behaviors, and together reflects a

broadly typical workload for general graph analytics.

2.3 GPU Graph Abstractions
Many graph primitives can be expressed as several inherently parallel computation stages

interspersed with synchronizations. Existing programmable frameworks on the GPU [30, 32,

33, 40] all employ a Bulk-Synchronous Parallel (BSP) programming model in which users

express a graph analytic program a series of consecutive “super-steps”, separated by global

barriers at the end of each super-step, where each super-step exhibits ample data parallelism

and can be run efficiently on a data-parallel GPU. The operations within each super-step may

include per-vertex and/or per-edge computations that run on all or a subset of vertices/edges
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in a graph, for instance, reading and/or updating each vertex’s/edge’s own associated data or

that of its neighbors. A super-step may instead traverse the graph and choose a new subset of

active vertices or edges, known as “frontier”, during or after graph computations. Thus the

data parallelism within a super- step is typically data parallelism over all vertices or edges in

the frontier. The programs themselves are generally iterative, convergent processes that run

super-steps that update vertex/edge values repeatedly until they reach a termination condition

(“convergence”).

The major differences of most high-level graph analytic frameworks lie in two aspects:

1) how a super-step is defined to update vertices and/or edges in the current frontier and

2) how to determine and generate a new frontier for the next super-step. In this work,

we study VertexAPI2 [32], an implementation strictly following the Gather-Apply-Scatter

(GAS) model; MapGraph [33], a modified version of the GAS model; and Gunrock [30],

our data-centric abstraction that focuses on manipulations of frontiers. All three frameworks

run bulk-synchronous super-steps on a frontier of active vertices/edges until convergence.

Notation: In performance figures of this thesis, we use VA for VertexAPI2, MapGraph for

MapGraph, and GR for Gunrock.

2.3.1 Gather-Apply-Scatter Model

The Gather-Apply-Scatter (GAS) approach was originally developed for distributed

environments [18, 20]. The GAS model decomposes a vertex program into three conceptual

phases: gather, apply, and scatter. The gather phase accumulates information about adjacent

vertices and edges of each active vertex through a generalized binary operation over its neighbor

list, for instance, binary plus (⊕) can be used in gather to accumulates the sum of the neighbor

list. The apply phase computes the accumulated value, the output of the gather phase, to the

active vertex as a new vertex attribute. And during the scatter phase, a predicate is evaluated on

all adjacent outgoing-edges and corresponding vertices. A vertex carries two states: active

and inactive. Both VertexAPI2 and MapGraph broadly follow the GAS model, but with

important differences. VertexAPI2 disables the scatter phase as none of the four primitives in its

current implementation can be expressed without push-updates; instead, after gather and apply,

VertexAPI2 writes predicate values to a |V |-length Boolean flag, then invokes an activate phase
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Listing 2.1: MapGraph

Program::Initialize(); // Initialization
// Repeat until the frontier is empty
while (frontier_size > 0) {
gather(); // Doing nothing
apply(); // Doing nothing
expand(); // Expanding neighbors
contract(); // Get new frontier

}
Problem.ExtractResults(); // Get Results

Listing 2.2: VetexAPI2

engine.setActive(); // Initialization
// Repeat until no active vertex exist
while (engine.countActive()) {
engine.gatherApply(); // Update labels
engine.scatterActivate(); // Get new
engine.nextIter(); // active list
setIterationCount(); // Count level

}
engine.getResults(); // Get results

Listing 2.3: Gunrock

BFSProblem::Init(); // Initialization
// Repeat until the frontier is empty
while (frontier_queue_length > 0) {
// Get neighbors and update labels
BFSEnactor::gunrock::oprtr::advance();
// Cenerate new vertex frontier
BFSEnactor::gunrock::oprtr::filter();

}
BFSProblem::Extract(); // Get result

Figure 2.2: Code snapshots for three different GPU graph analytic frameworks (BFS)

to scan and compact vertices associated with true flags to create frontiers for the next super-step.

MapGraph instead decomposes the scatter into two phases: expand, to generate edge frontiers

and contract, to eliminate duplicates in new frontiers that arise due to simultaneous discovery.

To improve flexibility, the gather and scatter phases in MapGraph support in-edges, out-edges,

or both.

2.3.2 Data-Centric Model

Rather than focusing on expressing sequential super-steps of computation on vertices,

Gunrock’s abstraction focuses on manipulations of the frontier of vertices and/or edges that

are actively participating in the computation. Gunrock supports three ways to manipulate the

current frontier: advance generates a new frontier by visiting the neighbors of the current

vertex frontier; filter generates a new frontier by choosing a subset of the current frontier

based on programmer-specified criteria; and compute executes an operation on all elements in

the current frontier in parallel. Gunrock’s advance and filter dynamically choose optimization

strategies during runtime depending on graph topology. In order to reduce the number of kernel

invocations and enhance producer-consumer locality, Gunrock’s compute steps are expressed

as device functions that can be fused into advance and filter kernels at compile time. Figure 2.2

shows how we can express BFS using operators in three different frameworks.
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Chapter 3

Methodology

3.1 Critical Factors for Efficiency
In this section, we identify and discuss important factors that are critical to fast GPU graph

analytics. Investigating these issues and evaluating design choices are necessary for building

high-level graph analytic frameworks.

3.1.1 Building Block Operators

Building block operators are vital for graph analytic frameworks. Being efficient can mean:

1) using these operators flexibly yields high-performance outcomes; 2) the operators themselves

are implemented efficiently. The former affects how graph primitives are defined and expressed,

which result in abstraction-level and performance differences; the latter impacts workload

distribution and load balancing, as well as memory access patterns across the GPU. As a

result, efficient building block graph operators are invariably tied to performance. Example

operators for the three frameworks in Section 2.3 include gather, apply, expand, contract,

activate, advance, and filter.

3.1.2 Workload Distribution

Workload distribution and load balancing are crucial issues for performance; previous work

has observed that these operations are dependent on graph structure [27, 28]. Hardwired graph

primitive implementations [1, 2, 4, 24, 25] have prioritized efficient (and primitive-customized)

implementations of these operations, thus to be competitive, high-level programmable

11



frameworks must offer high-performance but high-level strategies to address them. While

some operators are simple to parallelize on the GPU—GAS’s apply is perfectly data-parallel;

Gunrock’s filter is more complex but still straightforward—others are more complex and

irregular. Traversing neighbor lists, gather, and scatter, for instance, may each have a different

workload for every vertex, so regularizing workloads into a data-parallel programming model

is critical for efficiency.

3.1.3 Synchronization and Data Movement

Synchronizations and data movements are limiting factors under widely-adopted BSP models.

While the BSP model of computation is a good fit a GPU, the cost of its barrier synchronization

between super-steps remains expensive. Asynchronous models that may reduce this cost are

only just beginning to appear on the GPU [41]. Beyond BSP synchronization, any other global

synchronizations within BSP super-steps are also costly. Expert programmers often minimize

global synchronizations and unnecessary data movement across device kernels. How do the

high-level programming models we consider here, and the implementations of their operations,

impact performance?

3.1.4 Memory Behavior

Memory access patterns and usage are also main limiting factors for GPU performance. In graph

primitives, memory access patterns are both irregular and data-dependent, as noted by previous

work [26]. Thus efficient utilization, better access patterns for both global and shared memory,

fewer costly atomic operations, and less warp-level divergence contribute to superior overall

performance. Because GPU on-board memory capacity is limited, efficient global memory

usage is particularly important for addressing large-scale graph workloads.

3.2 Graph Topology
The performance of graph primitives is highly topology-dependent. Most GPU graph primitives

have much higher traversal rates on scale-free graphs then on road networks as we describe

in more detail in Section 4.1. We explore how graph topology impacts the overall graph

analytics performance using the following metrics. The eccentricity ε(v) is the maximum

distance between a vertex v and any other vertex in the graph. The radius of a graph is the

12



minimum graph eccentricity r = min ε(v) and in contrast, the diameter of a graph is the

maximum length of all paths between any pair of vertices d = max ε(v). The magnitude of

algebraic connectivity reflects the well-connectedness of the overall graph. For traversal-based

graph primitives, traversal depth (or search depth, number of iterations) is directly proportional

to the eccentricity and connectivity. The vertex degree implies the number of edges connected

to a vertex. The average number of degrees of a graph and its degree distribution determine

the amount of parallelism; and unbalanced degree distribution can significantly impact the load

balancing during graph traversal.

Real-world graph topologies usually fall into two categories: the first contains small

eccentricity graphs with highly-skewed scale-free degree distributions, which results in a subset

of few extremely high-degree vertices; the second has large diameters with evenly-distributed

degrees. In Chapter 4, we choose diverse datasets that encompass both categories, and also

generate several synthesized [42, 43] graphs whose eccentricity and diameter values span from

very small to very large.

Table 3.1 summarizes our benchmark suite and Table 3.2 (Line 1) shows the degree

distribution of four graphs from each group. Social networks commonly have scale-free

vertex degree distributions and small diameter (thus small depth). Synthetic Kronecker

datasets (kron_g500-logn17 ∼ kron_g500-logn21) are similar to social graphs with

the majority of the vertices belonging to only several levels of BFS. Delaunay datasets

(delaunay_n17 ∼ delaunay_n21) are Delaunay triangulations of random points in the

plane have extremely small out-degrees. Road networks and open street maps (OSMs) are two

types of real-world road networks with most (87.1%) vertices having an directed out-degree

below 4. Table 3.2 (Line 2) depicts the vertex frontier and edge frontier sizes as a function

of iteration running graph traversals, other graphs in the same group follow similar patterns.

Road networks and Delaunay meshes usually have comparable vertex and edge frontier sizes;

however, for social networks and Kronecker datasets, edge frontiers are enormous compared to

the vertex frontiers. We group the datasets above into four different groups: road, delaunay,

social, and kron. Graphs in a group share similar topology and thus similar behavior. Overall,

these datasets cover a wide range of graph topologies to help us characterize and understand the
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Dataset Graph Scale Vertex Degree Search Depth

Group Name Vertices Edges Max Average Min Max Average

road roadNet-CA 1.97M 5.53M 12 2.81 3 846 657

road asia_osm 12.0M 25.4M 9 2.13 26,516 45,724 36,077

road road_central 14.1M 33.9M 8 2.41 2,950 5,382 4,208

road road_usa 23.9M 57.7M 9 2.41 4,317 8,307 6,155

road europe_osm 51.0M 108M 13 2.12 15,402 28,326 19,338

dely delaunay_n17 131k 393k 17 6.00 143 167 155

dely delaunay_n18 262k 786k 21 6.00 197 228 214

dely delaunay_n19 524k 1.57M 21 6.00 273 319 295

dely delaunay_n20 1.05M 3.15M 23 6.00 379 445 413

dely delaunay_n21 2.10M 6.29M 23 6.00 529 620 571

social amazon-2008 735k 7.05M 1,077 9.58 18 25 20.9

social hollywood-2009 1.14M 113M 11,467 98.9 0 11 8.47

social tweets 1.85M 5.75M 61,038 3.12 2 22 16.9

social soc-orkut 3.00M 213M 27,466 71.0 7 9 8.20

social soc-LiveJournal1 4.85M 85.7M 20,333 17.7 12 20 13.9

kron kron_g500-logn17 131k 10.1M 29,935 78.0 0 7 4.40

kron kron_g500-logn18 262k 21.0M 49,162 80.7 0 7 4.59

kron kron_g500-logn19 524k 43.2M 80,674 83.1 0 7 5.09

kron kron_g500-logn20 1.05M 88.6M 131,503 85.1 0 7 4.73

kron kron_g500-logn21 2.10M 181M 213,904 86.8 0 7 4.60

Table 3.1: Our suite of benchmark datasets, all converted to symmetric graphs. Degree indicates
the average vertex degree for all vertices and depth is the average search depth randomly
sampled over at least 1000 BFS runs. We group the datasets above into four different groups:
road, delaunay, social, and kron. Datasets in the same group share similar structure and thus
similar behavior
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Dataset road_usa europe_osm delaunay-n17 delaunay-n21 soc-orkut soc-liveJournal1 kron_g500-logn17 kron_g500-logn21

Distribution

FrontierSize

Table 3.2: Degree distribution and BFS frontier size: vertex (dark) and edge (light) frontier sizes
as a function of iteration running BFS on two graphs in each group. Note that road networks and
Delaunay meshes usually have comparable vertex and edge frontier sizes; however, for social
and Kronecker datasets, edge frontiers are enormous compared to the vertex frontiers

performance and effectiveness of different graph analytic frameworks. Most of our real-world

graphs are taken from the 10th DIMACS Challenge, the University of Florida Sparse Matrix

Collection [44]; we also use synthetic graph regular random generators [42] and GTgraph [43]

(R-MAT) with parameters a = 0.57, b = c = 0.19 (choosing b = c for symmetry), d = 0.05. To

provide a weighted input for the SSSP primitives, we associate a random integer weight in the

range [1, 128) to each edge.

3.3 Experiment Environment
We empirically evaluate the effectiveness of graph primitives (Section 2.2), expressed in the

GAS implementations of VertexAPI v2, MapGraph v0.3.3 and our data-centric implementation

of Gunrock 1 discussed in Section 2, on our benchmark suite. We first present the overall

performance comparison of three frameworks, then dig into the detailed impacts of input

datasets, framework abstractions, and various optimizations. This section summarize the

machines and compilers used for experimental evaluation throughout this thesis.

Hardware: All experiments ran on a Linux workstation (“mario”) with 2 × 3.50 GHz

Intel(R) 4-core E5-2637 v2 Xeon(R) CPUs. The machine has a total of 512 GB of DDR3

main memory. In this thesis, we use a Tesla K40c NVIDIA GPU from the Kepler generation

with 12 GB on-board GDDR memory and compute capability 3.5. Tesla K40c has 15 vector

processors, termed streaming multiprocessors (SMX), each containing 192 parallel processing

cores, called streaming processors (SP). NVIDIA GPUs use the Single Instruction Multiple
1Using git commit 3f1a98a3ec64ee72cee43fbaea68f3e1f553703c on May 8, 2015
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Model Tesla K40c Architecture Kepler GK110B

Compute capability 3.5 SMXs (cores per SMX) 15,192

Warp size 32 Max threads per CTA 1,024

Max threads per SMX 2,048 Shmem per CTA (KB) 48

L2 cache (KB) 1,536 Total global memory (MB) 12,288

Peak off-chip BW (GB/s) 288 Peak GFLOP/s (DP FMA) 1,430

Table 3.3: NVIDIA Tesla K40c GPU used in experiments

Thread (SIMT) programming model. GPU device programs, kernels, run on a large number of

parallel threads to achieve massive data parallelism. Each set of 32 or 64 single threads forms

a group called a warp to execute in lockstep in a Single Instruction Multiple Data (SIMD)

fashion. These warps are then grouped into cooperative thread arrays called blocks, also called

Cooperative Thread Array (CTA), whose threads can communicate through a pool of on-chip

shared memory. K40c has 48 KB on-chip shared memory per streaming multiprocessor (SMX).

All SMXs share an off-chip global DRAM. The cards were connected to the host (CPU) via

two PCIe I/O hubs. A program may consist of one or more kernels, each consisting of one or

more cooperative thread arrays (CTAs), and each CTA consists of multiple warps. Details are

summarized in Table 3.3.

Compilers: The parallel GPU CUDA programs were compiled with NVCC compiler

(version 6.5.12). The sequential C/C++ code was compiled using GCC (Ubuntu

4.8.1-2ubuntu1 12.04) 4.8.1 with the -O3 optimization level. In this thesis, we aim to focus on

an abstraction-level understanding of the frameworks centered on their GPU implementations;

all results ignore transfer time (disk-to-memory and host-to-device). We use NVIDIA visual

profiler (nvprof) to collect some of our characterization results.
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Chapter 4

Evaluation and Analysis

We begin our evaluation by looking at primitive performance on a variety of graph types

and analyzing how the datasets influence each framework’s performance and information

propagation. Then to better understand the overall performance, we focus on the following

details of the abstraction and implementations: load balancing and workload distribution,

synchronization, and memory consumption and behavior.

4.1 Overall Performance
Figure 4.1 contains the normalized runtime for four graph primitives across all datasets on

three frameworks. We observe that: 1) the runtime ratios of a primitive evaluated on the

three frameworks can heavily differ simply because of the topology of the input graph; 2) for

traversal- based primitives, all frameworks have much higher traversal rates (lower elapsed

runtime) on scale-free graphs then on road networks. In the rest of this section, we identify and

characterize abstraction-level trade-offs and investigate the reasons and challenges for graph

analytics behind these observed differences in overall performance.

4.2 Input Dataset Impacts
4.2.1 Vertex/Edge Frontier Size

Ample parallelism is critical for GPU computing. To make full use of the GPU, programmers

must supply sufficient workload to the GPU to keep its many functional units occupied with

enough active threads to hide memory latency. The NVIDIA Tesla K40c we use here has
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Figure 4.1: Overall runtime on four primitives and four groups of input datasets (normalized
to Gunrock’s runtime. All Gunrock’s BFS results disable direction-optimizing because neither
MapGraph nor VertexAPI2 support this optimization). We report the execution time of first 20
super-steps for PageRank
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15 multiprocessors, each of which can support 2048 simultaneous threads; thus ∼30k active

threads are the bare minimum to keep the GPU fully occupied, and it is likely that many times

that number are required in practice.

We begin with a best-case scenario to evaluate the graph traversal: two traversal-based

primitives, BFS and SSSP on a synthetic perfectly load-balanced graph with no redundant work

(no concurrent child vertex discovery). Such a graph should allow a graph framework to achieve

its peak throughput. Figure 4.2 (a) illustrates the throughput in Millions of Traversed Edges Per

Second (MTEPS, higher is better) as a function of the edge frontier size at each BFS level during

the traversal. Generally, throughput increases as the edge frontier size increases. This behavior

is expected—larger edge frontiers means more parallelism—but for any of the frameworks, the

GPU does not reach its maximum throughput until it has millions of edges in its input frontier.

(The number of frontier edges for maximum throughput corresponds to on the order of 100

edges processed per hardware thread.) This requirement is a good match for scale-free graphs

(like social networks or kron), but means that less dense, low-degree and high- diameter graphs

like road networks will be unlikely to achieve maximum throughput on BSP-based GPU graph

frameworks.

VertexAPI2’s saturation point exceeds the largest synthetic frontier size we used. We

attribute such scalability and performance boost for VertexAPI2 to their switching of parallelism

strategy beyond a certain frontier size. These behavioral patterns suggest that ample workload

is critical for high throughput, and thus scale-free graphs will show the best results in general

across all frameworks. Between frameworks, the BFS topology preference observations

in Section 4.1 are confirmed by our results here: MapGraph and Gunrock performs more

advantageously on long- diameter road networks and meshes while VertexAPI2 benefits most

from social networks and scale-free kron graphs.

Let’s now turn to two different real-world datasets: a high-diameter road networks,

roadNet-CA, and a scale-free social graph, hollywood-2009. We show MTEPS for

these graphs in Figure 4.3 (RoadNet-CA is sampled). Peak MTEPS differ by several

orders of magnitude, which we can directly explain by looking at actual edge frontier sizes:

roadNet-CA’s range from 3 to 17,780 (≈ 214), while hollywood-2009’s peaks at 58.1M
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(b) Single-Source Shortest Path (SSSP)

Figure 4.2: Millions of Traversed Edges Per Second (MTEPS) vs. edge frontier size: measured
on synthetic trees with no concurrent child discovery (redundant work)

(between 225 and 226), which is substantially larger than the saturation frontier size we

observed in Figure 4.2. The performance patterns are consistent with the previous key findings;

VertexAPI2 achieves peak performance for two super-steps of the largest edge frontiers, which

explains its behavior on social networks and kron datasets.

BFS and SSSP are traversal-based and thus only have a subset of vertices or edges in a

graph active in a frontier at any given time. We see that when that fraction is small, we do not

achieve peak performance. In contrast, a dense-computation-based primitive like PageRank has

all vertices active in each super-step before convergence. Such a primitive will have a large

frontier on every super-step and be an excellent fit for a GPU; in practice, all three frameworks

perform similarly well on PageRank.

4.2.2 Per-Vertex Workload

Another important characteristic of graphs is the average degree (average neighbor list size),

which we can use to quantify per-vertex workload. Figure 4.4 shows the performance impact of

average degree of graph traversal with a set of synthetic regular random geometry graphs [42],

and scale-free R-MAT graphs [43]), all with the same scale, and thus same number of vertices,

and only differing in average degree. All frameworks demonstrate better performance with

increasing degree; more work per vertex leads to higher throughput. Smaller average degree
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Figure 4.3: Millions of Traversed Edges Per Second (MTEPS) for each super-step of two real
datasets: roadNet-CA and hollywood-2009 (roadNet-CA is sampled)
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(b) Scale-free R-MAT Graphs

Figure 4.4: Impact of average degrees on performance (measured in MTEPS): each graph in
the same group has fixed vertex count and varying vertex average degrees

graphs (e.g., road networks and OSMs) are limited by available parallelism. Larger average

(over 20 ∼ 30) graphs demonstrate notably higher MTEPS for all frameworks. For graphs with

small vertex degrees or small total number of vertices/edges, there are problems to feed many

parallel threads. In practice, this larger degree is necessary to provide enough parallelism to

keep the GPU fully occupied.
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(b) Computation-based: PageRank

Figure 4.5: Impact of skewness on performance (measured in runtime): all three graphs have
the same vertex count and edge count with different topology generated using R-MAT generator

4.2.3 Distribution and Skew-Freeness

Finally, scale-free degree distribution and their skewness also impact performance. We can

broaden our analysis by varying the skewness through varying parameters of the R-MAT graph

generator to create not only social-network-like graphs but also graphs with other behavior

as well. We set the ratio of the parameters a and b, c (choosing b = c for symmetry) to 8

(highly-skewed scale-free graph), 3 (closet to many real world scenarios) and 1 (Erdös Rényi

model). The result is three synthetic graphs with the same vertex count and edge count but

different skewness. Figure 4.5 shows our runtime results for BFS graph traversal and PageRank

on these three graphs.

On the traversal-based BFS and SSSP, we see lower runtime as skewness increases and

eccentricity decreases; runtime is most correlated to the number of super-steps (iterations) to

traverse the entire graph, and the highly-skewed graphs have the smallest diameter. On the other

hand, for computation-based PageRank, we see the opposite runtime behavior: the high amount

of skew yields noteworthy load-balancing challenges that hurt the overall runtime compared to

less-skew graphs.

In Summary: on large and dense graphs, performance is generally better than on sparse

graphs. The GPU shines when given large frontiers with large and uniformly-sized vertex
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frontiers, and when diameters are low. It struggles with small frontier sizes, with small vertex

degrees and load imbalances within the frontier, and with more synchronizations caused by

high diameters. Dense, scale-free, low-diameter graphs like social networks are particularly

well suited for the GPU; road networks are a poor fit to the frameworks we study here, because

they do not expose enough work to saturate the GPU. In general, traversal-based primitives

will be more affected by topology than computation-based primitives, because they operate on

a smaller subset of the graphs and hence have less parallel workload to do per step. Now we

turn away from how our graph frameworks perform on different topologies to the underlying

reasons why they perform that way.

4.3 Load Balancing Impacts
For graph analytics, the amount of parallelism is dynamic, time-varying, workload-dependent,

and hard to predict [27, 28]. The programmable frameworks we study here [30, 32, 33]

encapsulate their solution to this problem in their operators, which must capture this parallelism

at runtime. Thus, the design choices of Gunrock’s advance traversal operation and GAS’s gather

and scatter operations can appreciably impact performance.

4.3.1 Load Balancing Strategies

The graph analytic frameworks we study use three distinct techniques to achieve parallel

workload mapping at runtime:

• When the frontier is so small that there is no way to fully utilize the GPU, load balancing

is not a major concern. The simple strategy is thus the popular one: a per-thread

neighbor list expansion (PT), where an entire vertex’s neighbor list is mapped to a single

thread. However, as frontiers get larger and neighbor list sizes differ by several orders of

magnitude, PT’s load-balancing behavior becomes unacceptably bad.

• One alternative is dynamic workload mapping [1] (DWM), which groups neighbor lists

by size into three categories and uses one thread, one warp, or one block to cooperatively

expand one vertex’s neighbor list. The strategy achieves good utilization and load

balancing within blocks, but can still potentially suffers from intra-block load imbalance
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(Merrill et al. provide more details [1]).

• The other alternative is partitioned load-balancing workload mapping [25] (PLB), which

ignores any difference in neighbor list size and always chooses to map a fixed amount

of vertex or edge workload to one block. When the frontier size is small, it maps a

fixed number of vertices to a block (vertex-oriented balanced partitioning). All threads

expand all the neighbor lists cooperatively. When the frontier size is large, it maps a fixed

number of edges to a block (edge-oriented balanced partitioning). To make all threads

cooperatively visit all edges and know to which node’s neighbor list each edge belongs

requires extra work, either an extra load-balanced search (LBS) or a sorted search [45] is

needed after expanding. (Davidson et al. provide more details [25]).

VertexAPI2 uses PT when frontier size is small and uses PLB when frontier size is large.

Gunrock dynamically chooses between DWM and PLB according to the graph type (DWM for

mesh-like graphs and PLB for scale-free graphs). MapGraph also uses DWM and PLB: PLB

for gather and dynamically switching between DWM and PLB for scatter. However, instead of

switching between the two according to the graph type, it switches according to the frontier size.

Both MapGraph and VertexAPI2 implement PLB using load-balanced search while Gunrock

implements PLB using sorted search, both using primitives in Modern GPU [45].

In Figure 4.2 and Figure 4.3, we see significant performance differences between

VertexAPI2 and MapGraph, despite both using the same GAS programming model.

MapGraph’s two-phase method is efficient in expending the small frontiers that commonly

appear in long-diameter graphs. VertexAPI2’s PT strategy hurts its performance when the

frontier size is small, but it spends less time on redundant removal on scale-free graphs.

MapGraph behaves similar to Gunrock since similar dynamic strategies are used in both

frameworks. However, Gunrock’s implementation of PLB saves one pass through the frontier

and thus shows superior performance. In general, DWM brings the best performance on small

frontiers for both graph types and PLB shows the best performance on large frontiers for

scale-free graphs. A successful graph analytic framework must carefully and dynamically

consider both graph topology and frontier size to pick the best load-balancing strategy at

runtime.
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Figure 4.6: Phase breakdown of graph traversal for three frameworks: Overhead encompasses
synchronization and data movement overhead. In MapGraph, the expand phase enumerates
neighbors and the contract phase generates next level vertices. VertexAPI2 uses apply to update
labels and scatter to activate the next level. In Gunrock, filter is used to generate the next-level
frontier while updates can be either in advance or filter, depending on mode

4.3.2 BFS Level Breakdown

Figure 4.6 provides a level breakdown for BFS: in which operations does each framework

spend its time? BFS’s primary operations are traversing neighbors and updating labels,

and its stage breakdown is similar to other graph-traversal-based primitives, like SSSP. We

notice that long-diameter road networks and OSMs, which require more bulk synchronized

super-steps, have much more synchronization overhead; their execution time is mostly occupied

by traversing neighbor lists. Conversely, scale-free and social networks introduce significant

redundant edge discovery, thus contract/filter operations dominate their execution time.

4.4 Kernel Execution Patterns
4.4.1 Warp Execution Efficiency

Warp divergence occurs when threads in the same warp take different execution paths. For

graph primitives, this is the main contribution of control flow irregularity. Warp execution

efficiency (WEE) defines the ratio of the average active threads per warp to the maximum

number of threads per warp supported on a multiprocessor. Table 4.1 shows the average WEE

of different graph primitives for three frameworks across four datasets. For BFS primitive,

social and scale-free graphs enable a higher average warp execution efficiency across all
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Primitive Framework road delaunay soc kron

BFS

MapGraph 86.0% 84.1% 84.1% 92.3%

VertexAPI2 81.6% 73.4% 94.0% 98.4%

Gunrock 86.6% 83.4% 92.8% 94.1%

SSSP

MapGraph 90.6% 89.1% 94.6% 94.8%

VertexAPI2 95.4% 95.4% 94.6% 95.9%

Gunrock 96.9% 96.3% 96.6% 96.6%

CC

MapGraph 95.3% 92.9% 96.7% 97.3%

VertexAPI2 96.2% 92.3% 95.2% 95.3%

Gunrock 96.0% 96.8% 98.6% 96.1%

PageRank

MapGraph 96.3% 95.9% 97.1% 98.2%

VertexAPI2 94.9% 92.4% 97.0% 95.8%

Gunrock 93.4% 99.5% 99.6% 93.5%

Table 4.1: Average warp execution efficiency (WEE)

frameworks due to the highly-optimized load-balanced graph traversal operators used by each

framework. However, mesh-like road and Delaunay graphs show lower WEE due to two reasons:

1) underutilization and limited parallelism caused by small frontier sizes and slow frontier size

expansion; 2) the use of the per-thread-expand (PT) load-imbalanced neighbor list traversal

method. For graph algorithms with dense computation such as PageRank, all three frameworks

achieve very high percent WEE because all nodes in the neighbor lists are visited and used for

computations. Although CC for GAS is based on BFS, SSSP is traversal-based: all vertices are

actively finding minimum neighbors, introducing more parallelism and thus higher WEE.

4.4.2 Synchronization Impacts

Beyond load-balancing, another potential obstacle to performance is the cost of GPU

synchronizations, which occur in two places: 1) the implied BSP barriers at the end of each

BSP super-step, and 2) implicit global synchronizations between GPU kernel invocations

within each super-step. The BSP barrier count is directly proportional to the super-steps

required for a primitive to converge, and kernel invocation count corresponds to the number

of synchronizations within each super-steps. Each kernel invocation performs four steps: read
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BSP Barrier Count (BC) Kernel Invocation Count (KC)

Primitive MapGraph VertexAPI2 Gunrock Hardwired MapGraph VertexAPI2 Gunrock Hardwired

ro
ad

_u
sa

BFS 6,263 6,263 6,263 6262 18,842 89,045 49,660 11

SSSP 6,700 6,700 6,700 — 84,281 165,967 116,800 —

CC 6,262 6,262 13 10 77,840 178,551 93 83

PageRank 20 20 20 — 1,093 504 112 —

de
la

ua
y-

n2
1

BFS 564 565 565 564 2,042 9,229 1,133 388

SSSP 879 879 871 — 10,695 19,514 14,802 —

CC 564 564 7 7 6,085 14,949 58 59

PageRank 20 20 20 — 889 378 259 —

so
c-

L
iv

eJ
ou

rn
al

BFS 12 12 13 12 144 175 92 61

SSSP 31 31 32 — 365 801 466 —

CC 12 12 5 2 223 292 46 22

PageRank 20 20 20 — 1,094 552 313 —

kr
on

_g
50

0-
lo

gn
21 BFS 6 7 6 6 96 85 48 37

SSSP 10 10 9 — 142 147 82 —

CC 6 6 5 4 147 139 37 33

PageRank 20 20 20 — 893 438 269 —

Table 4.2: BSP Barrier Count (BC) and Kernel Count (KC) of BFS, SSSP, CC, and PageRank
for each framework against hardwired implementations [1, 2]: fewer is better. Bold numbers
indicate fewest among three programmable frameworks

graph data from global memory, compute, write results to global memory, and synchronize.

Many graphs with long tails have substantial synchronization overhead.

Table 4.2 summarizes the BSP Barrier Count (BC) and Kernel Count (KC) of BFS, SSSP,

CC, and PageRank for each framework against hardwired implementations (BFS: b40c [1];

CC: Soman et al. [2]). All three frameworks share the same BSP model and do not support

asynchronous execution, thus each framework has the same number of BSP barriers, except

for CC: the huge performance gap between Gunrock and the GAS implementations on CC

is primarily from Gunrock’s ability to run Greiner’s PRAM-based CC algorithm [46], which

implements hooking and pointer-jumping using the filter operator. The GAS implementations

are instead BFS-based, counting components by graph traversal, and suffer from a large number

of synchronizations and slow information propagation, especially for long-tail graphs.

Both BC and KC show strong positive correlations with achieved performance. The overall

correlation is shown in Table 4.3: for traversal-based primitives where all three frameworks
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BFS SSSP CC PageRank Overall

Correlation BC 0.759 0.721 0.878 — 0.624

Correlation KC 0.868 0.577 0.615 0.308 0.575

Table 4.3: Correlation of BC and KC with performance (measured as throughput). PageRank’s
BC data is not applicable because of its fixed super-step count

follow similar approaches, fewer synchronizations (implying kernels that do more work)

yield superior performance. Expert programmers fuse kernels [1, 47] together to reduces

synchronization and increase producer-consumer locality by reducing reads and writes to global

memory.

However, reducing kernel invocations is a non-trivial task for programmable frameworks

because the building blocks of programmable frameworks—operators—are typically kernel

invocations. Generally, high-level programming models trade off increased kernel invocation

overhead (compared to hardwired implementations) for flexibility and more diverse

expressiveness. That being said, reducing kernel invocations KC is a worthwhile target for

any framework implementation, and Gunrock’s ability to fuse compute operations into advance

or filter kernels appears to directly translate into both fewer kernel invocations and thus overall

better performance.

4.5 Memory Behavior Impacts
As graph primitives are often memory-bound due to a lack of locality, factors such as data

movement, memory access patterns, and total memory usage all have obvious impacts on

achieved performance.

4.5.1 Atomic Operations

Atomic instructions are generally considered expensive on GPUs [48], although their cost has

decreased with more recent GPU micro-architectures. Unfortunately, atomic operations are

a key ingredient of operations on irregular graph data structures, due to the large amount of

concurrent discovery particularly characteristic of scale-free graphs. Table 4.4 summarizes

each framework’s number of global atomic operations. BFS’s/SSSP’s atomics are found
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Primitive Dataset MapGraph VertexAPI2 Gunrock

BFS
roadNet-CA 55 320 56

kron_g500-logn17 8,091 1,723 2,862

SSSP
roadNet-CA 4,516 60,413 3,956

kron_g500-logn17 454,973 97,394 2,211

CC
roadNet-CA 288,309 112,270 15,657

kron_g500-logn17 2,569,069 162,983 1,082

PageRank
roadNet-CA 0 0 7,680

kron_g500-logn17 0 0 212

Table 4.4: Atomic operations in each framework: fewer is better

in MapGraph’s expand/contract, VertexAPI2’s activate, and Gunrock’s filter. MapGraph

and Gunrock show similar atomic behavior because they both visit neighbor lists and do

push-updates, then contract/filter out redundant vertices; for both, the work of contract/filter

is substantial. VertexAPI2 uses more atomic operations on road networks because its simple

per-thread expanding atomic activates are frequently used; conversely, its fewer atomic

operations in scale-free graphs are due to VertexAPI2’s use of a Boolean flag to indicate vertex

status in the new frontier-generating phase (activate).

Gunrock results in this thesis incorporate idempotent optimization, applicable primarily

to BFS, that allows multiple insertions of the same vertex in the frontier without impacting

correctness. It reduces the atomic operation count from 20,034 to 2,862 for BFS on

kron_g500-logn17. On this dataset, the idempotent optimization improves the traversal

rate in MTEPS from 891.7 MiEdges/s to 3291 MiEdges/s (a 3.69X speedup). Without the

idempotent operation, using atomic operations to check whether or not the vertices in next level

have already been claimed as someone else’s child is extremely expensive. In GAS model, this

optimization is not applicable because GAS frameworks cannot guarantee the idempotent of

arbitrary user-defined apply functions [32]. Turning to PageRank, we note that PageRank’s

runtime is dominated by vertex-centric updates and ideally suited to the GAS abstraction;

neither VertexAPI2 nor MapGraph requires any atomic operations in their implementations,

and partially as a result, both frameworks deliver excellent performance.
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Framework MapGraph VertexAPI2 Gunrock

dataset load store load store load store

delaunay 422k 204k 23.5k 9.78k 1.48k 4.70k

kron 18.5M 981k 840k 8.73M 1.89M 736k

Table 4.5: Achieved global load and store transactions on BFS: delanuay_n17 contains 131k
vertices and 393k edges, and Kron_g500-logn17 contains 131k vertices and 10.1M edges

4.5.2 Data Movement

Another metric directly proportional to kernel invocations of data-intensive graph primitives is

the data movement across GPU device kernels. Let the number of vertices in the graph be |V |

and the number of edges |E|, and consider BFS in both programming models as an example:

GAS model requires 5|E| + 6 |V | data transfers of which 4|E| + 3|V | are coalesced. In the

data-centric model, both of Gunrock’s load-balancing strategies require 5|E| + 4|V | global data

transfers, of which 3|E| + |V | are coalesced.

Table 4.5 summarizes the actual global load and global store counts for the three frameworks

running BFS on two types of real-world graphs. We notice that for delaunay_n17,

MapGraph requires much more data communication than Gunrock and VertexAPI2. Potential

reasons for this behavior are: 1) the cost of maintaining an edge frontier between MapGraph’s

expand and contract phase, and 2) the requirement for two-level loads from global memory to

registers: first loading frontier data into tile arrays and then loading from those arrays to do data

computation. In contrast, Gunrock’s PLB only has one level of such loads. VertexAPI2, on the

other hand, uses flags to indicate the status of vertices without generating edge frontiers, which

results in fewer data transfers. On kron_g500-logn17, MapGraph and Gunrock both have

many more reads than writes due to heavy concurrent discovery. In general, performance is

consistent with the number of memory transactions. The framework which has the least amount

of memory transactions usually have the best performance, such as Gunrock on road networks

and VertexAPI2 on kron.
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Figure 4.7: Memory consumption across datasets (normalized to Gunrock = 1)
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Figure 4.8: Impact of global memory bandwidth on performance

4.5.3 Memory Consumption and Bandwidth

All frameworks use Compressed Sparse Row (CSR) format or CSR-based format (Section 2.1)

to store graphs in memory. The design choice of different CSR-based graph formats of each

framework and how to efficiently access them dramatically affects performance. This section

will focus on the characterization of memory usage and bandwidth.

BFS is memory-bandwidth-limited for large graphs and therefore bandwidth has to

be handled with care. Without losing generality, Figure 4.8 illustrates the traversal

throughput, MTEPS, as a function of memory bandwidth running BFS on five kron datasets

(kron_g500-logn17 ∼ kron_g500-logn21). All three frameworks follow the same

patterns: higher achieved memory bandwidth leads to higher throughput. VertexAPI2 and

Gunrock use memory bandwidth more efficiently. However, no framework approaches

our GPU’s theoretical maximum memory bandwidth of 288 GB/sec, which implies that

implementations based on current CSR-based graph representations utilize a substantial number

of scattered (uncoalesced) reads and writes.

The frameworks in this study abstract graph primitives with iterative advance + filter steps
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or gather + apply + scatter steps. In the data-centric model, the advance traversal uses CSR

to expand the neighbors of the current vertex frontier. In GAS, the gather phase requires a

CSC representation of a graph to gather its neighbors (pull), and GAS’s scatter phase requires

CSR (push) to complete push-style updates and/or activations. Thus the GAS implementations

require storing the graph topology in both CSR and CSC formats, when we have directed

input. The usage of CSC doubles the memory consumption of GAS implementations compared

to Gunrock for directed inputs. On the other hand, Gunrock integrates optimizations that

consume memory beyond only CSR, such as edge list expansion in CC and direction-optimized

graph traversal (“pull”) on BFS, which requires a CSC format. Gunrock’s pull-enabled BFS

implementation requires 3.52 GB on kron_g500-logn21 dataset (1.26X compared with

non-pull-enabled implementation). This optimization improves the achieved traversal rate from

3476.6 MiEdges/s to 8384.5 MiEdges/s. Here, Gunrock demonstrates a trade-off between

memory consumption and performance.

In Figure 4.7, we investigate the global memory consumption. Scale-free graphs often

consume additional memory compared to long-diameter graphs due to the cost of maintaining

the fast-expanding and extremely large edge frontiers. In the GAS implementations, MapGraph

uses a two-step procedure to build CSR and CSC formats in memory, which result in an

overall factor of 1.88X ∼ 3.54X above Gunrock. VertexAPI2’s implementation eliminates

the scatter phase, which result in less but still not optimal memory consumption (1.27 ∼ 2.4

compared to Gunrock). The memory footprint for GAS abstraction and implementation is

clearly not optimal. Running BFS on kron_g500-logn21 requires 2.81 GB for Gunrock,

compared to 7.36 GB for MapGraph. Ultimately the large memory consumption of the GAS

implementations limits the size of graphs that the GAS implementations can fit into the GPU’s

limited memory (12 GB on the K40c). In real-word graph analytics problems, we should not

only consider the graph as simple collection of vertices and edges, the possible rich and diverse

information can be associated with each vertex or edge will result in more complexity in terms

of both storage and processing.
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Chapter 5

Discussion and Future Work

High-level GPU programmable interfaces are crucial for programmers to quickly build

and evaluate complex workloads using graph primitives. However, graphs are particularly

challenging: the intersection of varying graph topologies with different primitives yield

complex and even opposing optimization strategies. In this work we have learned that

the Gather-Apply-Scatter (GAS) abstraction can eliminate expensive atomic operations using

synchronous pull-based implementation to reduce synchronization overhead for primitives

dominated by vertex-centric updates; however, it suffers from slow information propagation

and high memory consumption. Gunrock’s data-centric abstraction enables more powerful and

flexible operators and lower memory consumption. In practice, Gunrock’s implementation

allows integrating more work in each kernel, thus requiring fewer kernel invocations,

synchronizations, data movements, and resulting in higher achieved throughput. For any of the

frameworks we studied, and for future frameworks, the design choice of operators and the ability

to implement efficient algorithms are key to achieving best-of-class performance. From an

architecture perspective, better hardware and programming-system support for load-balancing

irregular parallelism would be a worthwhile investment for better support of graph analytics.

5.1 Graph Representation and Mutability
All three frameworks utilize the CSR graph format (Section 2.1), and they do not provide

any mutability: one cannot easily add or remove vertices and/or edges from a CSR graph.

The benefit of CSR are fast traversal and memory efficient, however, changing topology is
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an extremely expensive operation during graph computation. Lack of support for mutable

graph structure limits the expressiveness of graph analytics; how to extend GPU frameworks

to support mutable topology is future work. For instance, the implementation of forming a

“super-vertex”, group a subset of vertices according to some user-defined criteria into one

super-vertex for next-level computations, commonly used in more complex primitive such as

in Borůvka’s Minimum Spanning Tree (MST) [49] and community detection [50] algorithms

requires rebuilding the entire in-memory CSR arrays for each super-step. Generalized

approaches for supporting dynamic graph topology changes during the computation on GPUs

can improve both programmability and efficiency. The static graph also limits the possible

solution to incrementally computations, with the slight modification of input graph such as

changing one edge or removing some vertices/edges. Current frameworks would recompute

using the new graph rather than incrementally update based on the modifications. Building data

structures for efficient storage, access, and updates of graph information is still an unsolved

challenge. Alternate graph formats might allow superior memory performance, particularly

with regard to data coalescing.

5.2 Powerful Operator Design
Graph analytics requires more powerful yet efficient operators that can manipulate graph

computations in varieties of ways. Common operators should be extended beyond simple

graph traversal and apply/compute. Other operations that appear many times in more advanced

primitives should be supported such as “pointer-jumping” (group a subset of vertices into a

star-like graph with one representative) used in CC and MST; forming a super-vertex used in

MST, community detection, and many others. How to keep improving the generality of the

programmable interface meaning high performance is worth exploring.

5.3 Asynchronous Execution
None of the programmable frameworks show impressive results on low-degree long-tail graphs.

More broadly, the common challenges to the frameworks we studied include synchronization

cost and limited parallelism. These may be a limitation of the BSP model and concentrate on

level-synchronous algorithms common to all three frameworks. The consistent synchronous
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approach can bring significant overheads and penalties due to the requirement of locking or

atomic operations. Using an asynchronous execution framework may be an interesting direction

for future work. Recent effort Frog [51] explores the possible ways to enable asynchronous

graph processing on the GPU with a graph coloring model, updating all the vertices with the

same color in parallel (one color per kernel execution). They show improvements by enabling

asynchronous executions at the price of non-trivial preprocessing (partition the graph). Better

support for asynchronous operations is an important future direction.

5.4 Other Challenges
Another challenge is automatic kernel fusion, which can potentially reduce synchronization

cost [1, 47], but current GPU programming frameworks do not perform this (difficult)

optimization automatically. Memory performance is a crucial aspect of any GPU graph

primitive. Finally, scalability is an important aspect that has not been covered in this

performance characterization works, however, it is vital for multi-GPU extension as real-world

graph size increases.
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